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Abstract. Molecular dynamics simulations of the perovskite oxide KNbO3 are performed with
a first-principles effective Hamiltonian. They reveal the prevalence of local polar distortions with
short-range chain-like correlations, present even in the paraelectric phase far aboveTc. The
ordering of these dynamically fluctuating distortions yields the observed temperature sequence
of ferroelectric phases. The simulations also reproduce the essential features of diffuse x-ray
scattering measurements and the weak temperature dependence of diffuse streak patterns observed
by Comeset al. These local distortions suggest an order–disorder character for the transitions.
Softening of optical phonon branches is observed in the same simulations not only nearq = 0,
suggesting a displacive character for the transition, but also over large regions of the Brillouin
zone. Dynamic real-space chains thus provide a unified framework for understanding both the
order–disorder and displacive characteristics of these phase transitions.

1. Introduction

There are many experimental indications in perovskite ferroelectrics that the actual atomic
structure in some of the phases may be significantly different locally to that indicated by the
average crystallographic structure deduced from elastic x-ray and neutron scattering. Diffuse
x-ray scattering measurements of Comeset al [1,2] on the temperature-dependent paraelectric
and ferroelectric phases of KNbO3 and BaTiO3 revealed phase-dependent streak patterns well
above the ferroelectric transition temperatures. These patterns were interpreted as evidence
for short-range order in the form of astaticchain structure. Other observations such as quasi-
elastic central peaks in neutron scattering [3] and Raman spectroscopy [4] above the phase
transition temperature are also indicative of preformed clusters of the low-temperature phase.
More recently, pair distribution functions obtained from neutron scattering measurements up
to very high momentum transfers [5] and XAFS measurements [6] indicate the presence of
local distortions with short-range order. These local distortions suggest an order–disorder
character for the observed phase transitions. On the other hand, there is extensive evidence
supporting a displacive mechanism for the transitions, as indicated by theq = 0 Curie–Weiss
softening of transverse optic (TO) phonon modes. However, in a displacive phase transition,
local distortions are expected to disappear rapidly aboveTc.

First-principles calculations provide a powerful tool for the detailed microscopic
investigation of atomic geometry and structural instabilities. In previous work [7] using the
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LAPW linear response method for the calculation of the zero-temperature phonon dispersion in
the cubic perovskite structure, the instability of KNbO3 against the formation of localized chain
distortions was observed. Similar calculations subsequently established the same instability for
BaTiO3 [8]. However, these investigations were limited to zero temperature and to relatively
small simulation cells. Thus the implications of these results for static or dynamical structural
distortions and phonons at non-zero temperature could not be determined.

With the construction of an effective Hamiltonian, the reach of the first-principles results
can be greatly extended. This has already proved to be a useful strategy for the quantitative
analysis of temperature-driven structural phase transitions in real materials [9–12]. The
effective Hamiltonian acts in the subspace of the full ionic configuration space which contains
the degrees of freedom relevant to the transition(s). These include, in particular, the ‘soft
mode’, identified as the unstable mode of the high-symmetry structure which freezes in to
produce the low-symmetry phase(s). In this subspace, the Born–Oppenheimer surface is
written as a Taylor expansion about the high-symmetry structure. The expansion coefficients
are determined from first-principles total-energy and linear response results, eliminating the
need for empirical input. Given certain approximations, non-zero-temperature simulations
usingHeff then should exactly reproduce the transition behaviour, with generic underestimates
of calculatedTcs being attributable to the use of the local density approximation, neglect of
higher-order coupling to degrees of freedom outside the effective-Hamiltonian subspace, and
the sensitivity of the transition to residual inaccuracies in the parametrization of strain coupling.

In this paper, a complementary analysis of the temperature dependence of both the real-
space distortions and the optic phonon branches throughout the Brillouin zone is performed
with a first-principles effective-Hamiltonian molecular dynamics method. In section 2, we
describe the construction of the effective Hamiltonian for KNbO3 and the method used for the
classical molecular dynamics simulations. In section 3, we present the results of calculations
of system averages and intersite correlations first in real space and then in reciprocal space,
showing that the phase sequence, the existence of preformed real-space chains, the diffuse x-
ray patterns, and the softening ofq = 0 phonons are all well reproduced, accounting for both
the order–disorder and displacive aspects of the ferroelectric transitions. Section 4 concludes
the paper.

2. Methodology

We constructedHeff for KNbO3 using the lattice Wannier-function (LWF) method [11]. Full
details of the construction are presented elsewhere [13], and we give only a brief description
here. The effective-Hamiltonian subspace is defined using a basis of localized and symmetrized
atomic displacement patterns, called lattice Wannier functions, which are constructed to
reproduce the first-principles unstable polar015 phonon as well as unstable transverse optic
phonon eigenvectors and frequencies at other high-symmetry points in the BZ [7]. For KNbO3,
the subspace is spanned by one vector degree of freedom per unit cell,ξiα, representing the
LWF coordinates, wherei = unit-cell index andα = x, y, z. We include as additional degrees
of freedom the homogeneous strain tensor, which describes changes in the overall volume and
shape of the simulation cell.

In the LWF basis, the kinetic energy retains a simple diagonal form. The potential energy
is expressed as a Taylor expansion in the LWF coordinatesξiα and can be organized as follows:

U = Uon−site +Ushort−range+Udipolar +ULWF−strain +Uelastic. (1)

We include anharmonic terms only in the on-site interaction

Uon−site= κξ2
i + δξ4

i + γ (ξ2
ixξ

2
iy + c.p.)
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and in the lowest-order coupling between LWF coordinates (on-site quadratic) and
homogeneous strain (linear)ULWF−strain. Strain coupling of this type has been shown to be
crucial in obtaining the experimentally observed sequence of ferroelectric phase transitions in
perovskite ferroelectrics [10,14]. The coefficients of the on-site anharmonic and strain coupling
terms were determined by fitting to first-principles total energies, varying the strain and
amplitude of uniform LWF distortions in the [100], [110] and [111] directions. The interactions
between LWF coordinates in different unit cells are included to quadratic order only, with the
general form

∑
ijαβ Jijαβξiαξjβ . Beyond third neighbours, theJijαβ are parametrized as the

interaction between two dipolesZ∗Eξi andZ∗Eξj , whereZ∗ is the mode effective charge for the
unstable zone-centre phonon, screened by the electronic dielectric constantε∞. Z∗ andε∞
are computed directly using LAPW linear response, while the short-rangeJijαβ are fitted to
the first-principles dynamical-matrix elements.

UsingHeff , classical molecular dynamics simulations were carried out for a 10×10×10
simulation cell, corresponding to 5000 atoms, with periodic boundary conditions; theξiα in
Heff are in units ofa/10, wherea = 4.016 Å is the lattice constant. A variable cell shape
formalism was used together with Nosé–Hoover thermostats to equilibrate the MD runs at
constant temperature [15]. After equilibration, and prior to computing the static and dynamic
structure factors, the thermostats were turned off and the cell shape and volume were kept
fixed. Further equilibration (constant-energy MD) generally caused the temperature to change
by about 5 K. After this last equilibration, MD runs of typically 20 000 time steps (each time
step∼one femtosecond) were performed. The static and dynamic structure factors and spectral
densitySξξ (q, ω) of theξiα were then computed [16] using data from every tenth time step.

3. Results and discussion

The various structural phases and transition temperaturesTc are identified in the MD
simulations by calculating the three components of the order parameterSα, defined as an
average over the LWF coordinates:Sα = (1/N)

∑
i ξiα. For example, the time average of

all three components of the order parameter is zero at 400 K in KNbO3, indicating that the
system is in the cubic paraelectric phase. At 370 K, one of the components of the order
parameter freezes out with a non-zero average value of about 0.16, but the time average of
the other two components is still zero, indicating that the system is in the tetragonal phase.
Subsequent freezing out of the other components signals transitions to the orthorhombic and
rhombohedral phases. The MDTc-values were calculated by us for KNbO3 and, as a calibration
of the method, for BaTiO3, using theHeff constructed in reference [10]. The results, given in
table 1, are averages of cooling and heating runs, and we estimate the error in these numbers
to be about 5–10 K. As mentioned, the calculatedTc for the cubic–tetragonal transition is
significantly underestimated for both materials.Tcs for the R–O and O–T transitions are in
better agreement, with the R–O agreement being the best. In any case, the non-trivial phase
sequence and the trend from BaTiO3 to KNbO3 are correctly reproduced, suggesting that the
effective Hamiltonian captures the essential behaviour of the microscopic fluctuations driving
the transitions.

First, we interpret experimental observations of local distortions and short-range order
by analysing the simulation results in real space. Figure 1 shows the time dependence in
KNbO3 of the real-space LWF coordinates for three cases: (1)ξiy in the 230 K orthorhombic
phase (lowest family of curves), (2)ξix in the 230 K orthorhombic phase (middle family of
curves), and (3)ξix in the 390 K cubic phase (uppermost family of curves). Each family of
curves consists of six curves,(i = 0, . . . ,5) for LWF coordinate components in six adjacent
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Table 1. Comparison of calculated and measured transition temperatures (see the text), between
the rhombohedral (R), orthorhombic (O), tetragonal (T), and cubic (C) phases. Temperatures are
in kelvin.

R–O O–T T–C

KNbO3

MD 210 260 370
Experimenta 210–265 488 701

BaTiO3

MD 200 230 290
MCb 197 230 290
Experimentc 183 278 403

a See, for example, reference [21].
b Reference [10].
c From reference [10].
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Figure 1. The time dependence of the LWF coordinate componentsξix and ξiy in the ortho-
rhombic (230 K) and cubic (390 K) phases of KNbO3, for six (i = 0, . . . ,5) adjacent primitive
cells along an uncondensed chain in thex-direction (see the text). The order parametersSy andSz
are condensed, butSx = 0. Chain-like correlations are evident in the correlated motion of the six
LWF coordinatesξix as a function of time, but not in they-components, which oscillate randomly
about the condensed value of−0.16.

primitive cells along thex-direction, i.e. along a [100] ‘chain’. Thex-direction was chosen
because the order parameterSx was zero or ‘uncondensed’ in all of the simulations shown.
All components of the order parameter are zero in the cubic phase, of course, but in the
orthorhombic phase, theSy- andSz-components were non-zero or ‘condensed’. There is a
dramatic difference between the lower and middle family of curves, both of which are for
the 230 K orthorhombic phase. The lower family shows that the LWF components giving
displacements in they-direction,ξiy , are uncorrelated for adjacent cells along thex-direction.
(Note that the average value is non-zero, corresponding to the condensedSy order parameter.)
There is also no correlation between adjacentx-chains of theξix-displacements (not shown).
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By contrast, the middle family of curves shows that the LWF componentsξix , displacements
along thex-chain, are strongly correlated along thex-direction. The same correlation
between theξix is observed in the upper family of curves for the cubic phase. The order
parameter componentSx = (1/N)

∑
i ξix measures the long-range order associated with the

ξix-displacements. AlthoughSx is zero on average, figure 1 shows that there isdynamicchain-
like short-range order present in the system, with the characteristic chain-reversal frequency
increasing with increasing temperature. In the cubic phase the chain correlations persist to
temperatures far above the cubic–tetragonal ferroelectric phase transition, and we also observe
(not shown) identical correlatedξiy-displacements for adjacent cells in they-direction, and for
ξiz-displacements along thez-direction.
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Figure 2. The solid curves are two-site equal-time probability distributions,P (2)(ξ(i) − ξ(0)),
for i = 1, 2, 3, and 5 along condensedy- and z-chains and for uncondensedx-chains in
orthorhombic KNbO3. In both cases,ξ represents the longitudinal component of the LWF
coordinate along the chain direction. The dashed curves are obtained using the one-site probability
distribution, assuming no correlation between the two sites. The inset shows the one-site probability
distributions,P(ξ(0)), for thex-, y-, andz-components in the orthorhombic phase, as well as in
the cubic phase. (Due to the use of periodic boundary conditions in the 10× 10× 10 simulation
cell, the largest nearest-neighbour distance along a chain is 5a.)

Figure 2 gives a more quantitative account of these correlated motions. The inset
shows the one-site probability distributions,P(ξ(0)), for the x-, y-, andz-components in
the orthorhombic phase, as well as in the cubic phase. Since they- andz-components of
the order parameter are condensed in the orthorhombic phase, their respective distributions
are not centred on zero, while thex-distribution is centred on zero in both the orthorhombic
and cubic phases. Moreover, they- andz-distributions are narrower than thex-distribution.
Due to its higher temperature, thex-distribution in the cubic phase is broader than that in the
orthorhombic phase. The main figure presents two-site equal-time probability distributions for
the orthorhombic phase of KNbO3, P (2)(ξ(i) − ξ(0)), for longitudinal displacements along
chains, withi = 1, 2, 3, and 5 indexing primitive cells along condensedy- and z-chains
(curves on the left) and for uncondensedx-chains (curves on the right). In both cases, the
dashed curves are obtained using the one-site probability distributions shown in the inset and
assuming that there is no correlation between the two sites. The large differences between the
dashed and solidP (2)(ξ(i) − ξ(0)) curves on the right reflects theξix chain-like correlations
alongx-chains. The dashed and solid curves on the left, however, are almost indistinguishable,
indicating no longitudinal correlations along the condensedy- andz-chains.

Next, we show that the dynamic chain-like correlations that we have found in KNbO3
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Figure 3. Calculated diffuse x-ray scattering in BaTiO3, corresponding to monochromatic Mo Kα
(see the text). The plane of the figure is perpendicular to a cubic axis and to the incident x-ray.
(a) cubic, (b) tetragonal, (c) orthorhombic, and (d) rhombohedral phases.

and BaTiO3 are consistent with the observed diffuse x-ray scattering intensity streak patterns.
Figure 3 presents simulated diffuse elastic x-ray scattering intensities. These were determined
from static-structure-factorS(q)MD calculations for BaTiO3 [18]. The position and sequential
disappearance of the three families (circles, vertical, and horizontal, respectively) of streak
patterns on cooling from the cubic to rhombohedral phases reproduces the behaviour observed
in BaTiO3 and KNbO3 [2]. Moreover, the streak intensities are only slowly varying functions of
temperature within a structural phase and persist well above the cubic-to-tetragonal transition.
To explain the streak patterns, Comeset al invoked scattering from disordered finite-length
static chains, hypothesizing that upon cooling there is a sequential ordering of chains directed
along the three cubic axes. Thus, for example, in the cubic-to-tetragonal transition, the ordering
of thez-chains corresponds to the disappearance of the incoherent scattering (circular streaks
in figure 6(a) of reference [2]) due to randomly orientedz-chains. Subsequent ordering of the
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x- andy-chains corresponds to entering the orthorhombic and rhombohedral phases, with all of
the chains being ordered in the ground-state rhombohedral phase. In further work, Hüller [20]
alternatively proposed that the streak patterns could be explained dynamically. More recently,
Holma et al [19] performed a careful analysis of their diffuse x-ray measurements and
concluded that their results were in better agreement with Holma’s model of dynamic chains.
Theab initio linear response calculations of Yu and Krakauer [7] on KNbO3 and of Ghosez
et al [8] on BaTiO3 provided theoretical support for both of these explanations by showing the
existence of BZ slab-like instabilities, which could result in either static or dynamic chains. The
present MD simulations, which use anHeff based on the first-principles results, conclusively
show that the chains are dynamic, and figure 3 shows that these dynamic chains can also
reproduce the diffuse x-ray data.

The local distortions and short-range order on short length scales in real space imply that
the structural instability occurs over large regions in wavevector space. At zero temperature,
this correspondence has been observed in theab initio linear response calculations of Yu
and Krakauer [7] on KNbO3 and of Ghosezet al [8] on BaTiO3, which revealed unstable
(i.e. imaginary-frequency) TO branches extending all the way out to the BZ boundaries along
〈100〉 directions and throughout three mutually perpendicular interpenetrating slabs centred at
q = 0. In the high-temperature phases, this suggests the possibility of the softening of entire
anharmonically stabilized phonon branches.

1000 K
Cubic

0.0

0.0

0.0

0.5

0.5

0.5

400 K
Cubic

230 K
Ortho

0.0

Figure 4. Left-hand panel:Sξξ (q, ω) for q = [000] and [0.5 0 0] at three temperatures. The
degeneracy of the TO modes in the cubic phase is lifted in the orthorhombic phase. Right-hand
panel: the full [100] wavevector dependence of the TOSξξ (q, ω) peak positions.

In our MD simulations for KNbO3, the temperature-dependent phonon dispersion was
determined from the wavevector dependence of pronounced peaks in the Fourier-transformed
autocorrelation function. The left-hand panel of figure 4 shows examples of the calculated
spectral densitySξξ (q, ω) [16], for three different temperatures, at reduced wavevectors
q = 0.0 and 0.5, and the right-hand panel shows the full dispersion of these peaks for all
wavevectors along the [100] direction in the Brillouin zone. These results are characterized
by well-defined phonon peaks, identified as TO modes. The two TO branches are degenerate
in the cubic phase, but split in the orthorhombic phase with one being stiffened dramatically
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to higher frequency. The frequency for smallq in the cubic phase atT = 400 K (30 K above
Tc) is in good agreement with the TO frequency measured through inelastic neutron scattering
by Holma and Chen [17] about 100 K above the transition. For larger wavevectors, the
experimentally deduced dispersion is considerably flatter than that calculated, but the precise
dispersion forq > 0.3 may be somewhat uncertain, because the measured peak intensity was
extremely low and the background unusually high.

The most striking feature of figure 4 is that theentireTO branch is very much temperature
dependent. This behaviour differs from the usual picture of a displacive transition, in which
softening occurs only in the vicinity of the wavevector associated with the structural phase
transition (q = 0 for KNbO3). Comparison of the calculated results forq = 0.0 in the cubic
phase at 1000 K and 400 K shows a pronounced softening of the TO mode at all wavevectors.
The degeneracy of the TO modes in the cubic phase is lifted in the orthorhombic phase, with one
mode remaining soft and the other being greatly stiffened to about 7–8 THz. The condensation
of the order parametersSy andSz is associated with the stiffening of the corresponding soft
TO mode as shown in figure 4, which eliminates these components of the structural instability
and hence the chain-like correlations along they- andz-directions.

In an ideal displacive phase transition, a phonon frequency softens at a wavevector (Eq = 0
in KNbO3) associated with the low-temperature phase. Measurements made only near this
wavevector can then suggest a purely displacive character for the transition. The fact that an
entire phonon branch softens is what implies the presence of local distortions and short-range
order on short length scales in real space. Thus, observations of local structure and an ‘order–
disorder’ character can in fact be consistent with a displacive Curie–Weiss behaviour of the
zone-centre optic phonon.

4. Conclusions

We have demonstrated (1) the existence in real space of chains and (2) thedynamiccharacter
of these chains. The MD simulations show that the chains arepreformedwell above the
cubic–tetragonal phase transition temperature. The chains are defined by rows of distorted
primitive cells oriented along the three cubic axes, with the atomic displacements along the
chain highly correlated with one other. Displacements in different chains are uncorrelated at
high temperature, and the observed phase transitions correspond to the sequential freezing or
onset of coherence of families of chains along the three cubic axes. The softening of entire
branches of unstable TO modes is directly associated with these real-space chains and provides
a framework for understanding both the displacive and order–disorder characteristics of these
phase transitions.
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